

Copyright $\odot 2013$ by NCEES ${ }^{\circledR}$. All rights reserved.
All NCEES material is copyrighted under the laws of the United States. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means without the prior written permission of NCEES. Requests for permissions should be addressed in writing to permissions@ncees.org.

PO Box 1686
Clemson, SC 29633
800-250-3196
www.ncees.org
ISBN 978-1-932613-67-4
Printed in the United States of America
Third printing June 2014
Edition 9.2

Circular Pipe Head Loss Equation (Head Loss Expressed

 in Feet)$$
h_{f}=\frac{4.73 L}{C^{1.852} D^{4.87}} Q^{1.852}, \text { where }
$$

$h_{f}=$ head loss (ft)
$L=$ pipe length (ft)
$D=$ pipe diameter (ft)
$Q=$ flow (cfs)
$C=$ Hazen-Williams coefficient
Circular Pipe Head Loss Equation (Head Loss Expressed
as Pressure) as Pressure)
U.S. Customary Units

$$
P=\frac{4.52 Q^{1.85}}{C^{1.85} D^{4.87}}, \text { where }
$$

$P=$ pressure loss (psi per foot of pipe)
$Q=$ flow (gpm)
$D=$ pipe diameter (inches)
$C=$ Hazen-Williams coefficient

SI Units

$$
P=\frac{6.05 Q^{1.85}}{C^{1.85} D^{4.87}} \times 10^{5}, \text { where }
$$

$P=$ pressure loss (bars per meter of pipe)
$Q=$ flow (liters/minute)
$D=$ pipe diameter (mm)

Values of Hazen-Williams Coefficient \boldsymbol{C}	
Pipe Material	C
Ductile iron	140
Concrete (regardless of age)	130
Cast iron:	
\quad New	130
5 yr old	120
20 yr old	100
Welded steel, new	120
Wood stave (regardless of age)	120
Vitrified clay	110
Riveted steel, new	110
Brick sewers	100
Asbestos-cement	140
Plastic	150

TRANSPORTATION

U.S. Customary Units
$a=$ deceleration rate $\left(\mathrm{ft} / \mathrm{sec}^{2}\right)$
$A \quad=$ absolute value of algebraic difference in grades (\%)
$e \quad=$ superelevation (\%)
$f \quad=$ side friction factor
$\pm G=$ percent grade divided by 100 (uphill grade " + ")
$h_{1} \quad=$ height of driver's eyes above the roadway surface (ft)
$h_{2}=$ height of object above the roadway surface (ft)
$L=$ length of curve (ft)
$L_{\mathrm{s}} \quad=$ spiral transition length (ft)
$R=$ radius of curve (ft)
$S S D=$ stopping sight distance (ft)
$t \quad=$ driver reaction time (sec)
$V=$ design speed (mph)
$v \quad=$ vehicle approach speed (fps)
W = width of intersection, curb-to-curb (ft)
$l=$ length of vehicle (ft)
$y=$ length of yellow interval to nearest 0.1 sec (sec)
$r \quad=$ length of red clearance interval to nearest $0.1 \mathrm{sec}(\mathrm{sec})$

Vehicle Signal Change Interval

$$
\begin{aligned}
& y=t+\frac{v}{2 a \pm 64.4 G} \\
& r=\frac{W+l}{v}
\end{aligned}
$$

Stopping Sight Distance

$S S D=1.47 V t+\frac{V^{2}}{30\left(\left(\frac{a}{32.2}\right) \pm G\right)}$

