

Copyright ©2013 by NCEES [®] . All rights reserved.
All NCEES material is copyrighted under the laws of the United States. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means without the prior written permission of NCEES. Requests for permissions should be addressed in writing to permissions@ncees.org.
PO Box 1686 Clemson, SC 29633 800-250-3196 www.ncees.org
ISBN 978-1-932613-67-4

Printed in the United States of America

Third printing June 2014 Edition 9.2

Circular Pipe Head Loss Equation (Head Loss Expressed in Feet)

$$h_f = \frac{4.73 L}{C^{1.852} D^{4.87}} Q^{1.852}$$
, where

 h_f = head loss (ft)

 \vec{L} = pipe length (ft)

D = pipe diameter (ft)

Q = flow (cfs)

C = Hazen-Williams coefficient

Circular Pipe Head Loss Equation (Head Loss Expressed as Pressure)

U.S. Customary Units

$$P = \frac{4.52 \ Q^{1.85}}{C^{1.85} \ D^{4.87}}$$
, where

P = pressure loss (psi per foot of pipe)

Q = flow (gpm)

D = pipe diameter (inches)

C = Hazen-Williams coefficient

SI Units

$$P = \frac{6.05 \ Q^{1.85}}{C^{1.85}} \frac{Q^{1.85}}{D^{4.87}} \times 10^5$$
, where

P = pressure loss (bars per meter of pipe)

Q = flow (liters/minute)

D = pipe diameter (mm)

Values of Hazen-Williams Coefficient C	
Pipe Material	С
Ductile iron	140
Concrete (regardless of age)	130
Cast iron:	
New	130
5 yr old	120
20 yr old	100
Welded steel, new	120
Wood stave (regardless of age)	120
Vitrified clay	110
Riveted steel, new	110
Brick sewers	100
Asbestos-cement	140
Plastic	150

TRANSPORTATION

U.S. Customary Units

 $a = \text{deceleration rate (ft/sec}^2)$

A =absolute value of algebraic difference in grades (%)

e = superelevation (%)f = side friction factor

 $\pm G$ = percent grade divided by 100 (uphill grade "+")

 h_1 = height of driver's eyes above the roadway surface (ft)

 h_2 = height of object above the roadway surface (ft)

L = length of curve (ft)

 L_s = spiral transition length (ft)

R = radius of curve (ft)

SSD = stopping sight distance (ft)

t = driver reaction time (sec)

V = design speed (mph)

v = vehicle approach speed (fps)

W =width of intersection, curb-to-curb (ft)

l = length of vehicle (ft)

y =length of yellow interval to nearest 0.1 sec (sec)

= length of red clearance interval to nearest 0.1 sec (sec)

Vehicle Signal Change Interval

$$y = t + \frac{v}{2a \pm 64.4 G}$$
$$r = \frac{W+l}{v}$$

Stopping Sight Distance

$$SSD = 1.47Vt + \frac{V^2}{30\left(\left(\frac{a}{32.2}\right) \pm G\right)}$$