2011

Isaac Newton vs. Red Light Cameras

Failure Groups of Traffic Signals Town of Cary, North Carolina

Brian Ceccarelli

redlightrobber.com
2/20/2011

Table of Contents

Introduction 3
Obsolete Signal Plan 4
Arbitrary and Capricious 5
Dilemma Zone 6
King Cnut. 8
Citation Statistics 2004-2010, Town of Cary 9

Introduction

The Town of Cary introduced red light cameras in 2004. The Town of Cary operates them all illegally.

For one reason or another, every intersection either has engineering defects in the yellow light durations, or its traffic signal plan is not signed, or both. Most intersections have these problems, not just the intersections with red light cameras.

The reason why most people haven't heard about this is because it took the red light cameras to flush out the problem. The cameras in themselves are precision measuring devices. They independently monitor the intersections. The data the cameras collect are called citation statistics. The statistics are not only useful for issuing citations, but also useful for measuring the accuracy of the traffic signals themselves.

Disparity from one intersection to another indicates engineering defects—not careless drivers. In the case of the Town of Cary, the widely disparate data taken by the cameras illustrates that there is not a single intersection that works right. All fall short. Some are worse than others. The various North Carolina laws, Town of Cary charter, or the Canute ${ }^{1}$ legal precedent, invalidate every intersection. In the end, there is not a single red light camera citation that the Town of Cary has issued that is legal.

This document describes three failure groups. All intersections in Cary fall into one of these groups. The red light cameras operating in the first group are illegal because they do not follow the traffic signal plans as required by North Carolina Session Laws and Town of Cary Charter. The red light cameras in the second group are illegal because they violate the law of momentum. The red light cameras in the third group are illegal because the equation behind the setting of the yellow light duration has a false premise in it—a premise which establishes a gamble and bias which guarantees that people will run red lights. Traffic engineers are aware of the last group. They even have a name for it: the dilemma zone.

There is a common theme among the failures. The NCDOT sets the yellow light durations too short. Group 1 has yellow lights which are too short because of a bureaucratic problem. Group 2 and 3 yellow durations are too short because engineers intentionally made them that way. Without realizing they have violated basic laws of physics, rationalizing the durations by establishing the goals of traffic capacity over traffic safety, blindly following "standards" or setting yellows short to profit the town and its business partners, engineers have botched up the yellow light durations of all signals in Cary.

The more and more a DOT shortens a yellow light duration, the more and more cars will run red lights, and the more and more cars will have accidents. It has gotten so bad, that after a fatal accident caused by short yellow, one town was charged and convicted of wrongful death.

Here are the three failure groups:

Group	Name	Failure
1		a. The traffic signal plan does not match the intersection.
	Obsolete Signal Plan	The NCDOT has a blueprint for every intersection. The blueprint is called a signal plan. Among the things on the plan are the speed limits for the roads and the intervals for the yellow lights. On the plan, the intervals for the yellow lights are the result of a math equation based on the speed limit. But when the plan is obsolete, the actual road may have a speed and interval which do not correspond to each other.
		Take the case of Cary Town Blvd. and Convention. 19 years ago, the NCDOT initially set up the traffic intersection according to the signal plan. The signal plan calls for a 35 mph speed limit with a yellow light interval of 4.0 seconds. 4.0 seconds is the result of the yellow light equation for a 35 mph road.
		After several years, the NCDOT decided that traffic can move faster on Cary Town Blvd. So they returned to the Cary Town Blvd. and replaced the 35 mph signs with 45 mph signs. They did not change the yellow light interval. The yellow light interval remained 4.0 seconds. A 45 mph road requires a 4.5 second interval. The yellow is 0.5 seconds short.
		That mere half second doubled the number of red light runners to about 1200 per year. A boon to RedFlex Camera Company and a safety hazard to everyone.
		The case of Cary Parkway at High Meadows (Westbound) is a case where the signal plan says the yellow interval is 4.5 seconds and the grade of the road is a 1% incline. But the actual yellow interval is 4.4 seconds and the grade of over the safe braking distance is both a decline and an incline. An incline enables Cary to shorten the yellow interval, but the decline should force Cary to lengthen the interval. Cary did the former but did not consider the latter.
		The Town of Cary requires that in order to operate a red light camera, the yellow intervals have to be at least the result of that yellow light equation. The Town Charter additionally says that all yellow intervals at an intersection, not just the ones monitored by red light cameras, must be at least the result of the yellow light equation.

b. A less important problem is that an engineer did not sign and seal the traffic signal plan. According to Session Law 2004-141, traffic signal plans at red light camera intersections have to be signed and sealed by a professional engineer.

Arbitrary and Capricious

a. Most yellow light intervals in left turn lanes are shorter than the yellows for the straight-thru lanes. There is no valid reason for this. It is arbitrary.

NCDOT does have an invalid reason. They assume that cars in the left turn lane approach the intersection at 20 mph , even when the cars are still hundreds of feet from the intersection. That's pretty dumb. The only time cars approach an intersection at 20 mph is when there is a queue of cars waiting at the light. When there is no queue, the driver has a clear path to the intersection. The driver will approach the intersection at the speed limit. Not until the driver arrives a few dozen feet before the intersection will he slow to turn. By that time, if the light turns yellow, it is too late to stop or go. He will run a red light.

The NCDOT sets the yellow to 3.0 seconds for a left turning car. 3.0 seconds is the interval for a 20 mph car. The NCDOT does not care if the speed limit is 45 mph . 3.0 seconds is what you get at intersections such as Walnut and Meeting Place, and Cary Parkway and Kildaire Farms Rd. Walnut and Kildaire Farms Rd. are 45 mph roads.
3.0 seconds is shorter than any driver going 45 mph can react to. When the driver is closer to the intersection than the 45 mph safe braking distance, the driver will run the red light: He cannot traverse the distance to the intersection at the speed limit without the light turning red before he gets there. He cannot stop because he is well inside the safe braking distance of a 45 mph car. He will run the red light.

Walnut and Meeting Place is Cary's single biggest money maker. Cary has collected $\$ 1.5$ million dollars so far just on this one light.

Since January 2010, Cary decreased the length of two left turn yellows at Northbound and Westbound Kildaire Farms Rd at Cary Parkway to 3.0 seconds. Cary increased the number of red light runners by 1000.00\%. These new signals have a double problem. Doubly arbitrary left yellow durations. There are now two left turn yellows appearing to Northbound traffic and two left turn yellows appearing to Westbound traffic. Their intervals are different. The first yellow interval comes at the
end of the left-only green. That yellow is 3.0 seconds long. The second yellow interval comes before straight-thru traffic stops. That yellow is ~ 4.5 seconds long Different. Totally arbitrary. Totally illegal.

The Canute ruling. One cannot enact legislation which countermands the Laws of Nature. The Town of Cary cannot pass a law preventing water to freeze any more than they can pass a law preventing inertia. Yet the latter is exactly what they did. A shorter left violates the Laws of Physics, specifically Newton's Second Laws of Motion. The Second Law of Motion simply says that cars of equal weight all going 45 mph need the same amount of time to stop. They must have the same yellow time.
b. Sometimes the NCDOT sets a yellow interval, not necessarily a left turn yellow, to some arbitrary value other than the result from the math function. They may use a different standard for that.

One of these standards is the $85^{\text {th }}$ percentile rule. Unfortunately the NCDOT's version of the $85^{\text {th }}$ rule is a perversion of AASHTO's (American Association of State Highway and Transportation Officials) $85^{\text {th }}$ percentile rule. AASHTO says to measure the average speed of 85 percent of the cars, and then set the speed limit to that measurement (Geometric Design of Highways and Streets, p. 655 AASTHO 2004). NCDOT, on the other hand, says to measure the average speed of 85 percent of the cars, and then set the yellow light interval according to that measurement. (This perversion of the $85^{\text {th }}$ percentile rule may be the origin of the 3.0 left turn yellow.)

That allows NCDOT to ignore the actual speed limit. But wait! Cars can legally travel at the speed limit. So the NCDOT forces these remaining cars, a whopping 15% who are abiding by the law, to run red lights.

3
 Dilemma

Zone
a. All traffic signals fail because the math equation which the NCDOT uses to compute yellow intervals has physics mistakes.

The nature of the mistake deserves its own papers. I address this safety issue in two papers: Dilemma Zone and The Derivation of the Yellow Light Equation. These papers describe the extent to which traffic engineers sacrifice safety in the name of traffic flow.

The traffic engineer's purpose of the yellow light is the physics error. The problem starts at the very beginning, before the equation. The corrupt math equation is a result of a corrupt premise that "Yellow light means GO!" For decades, you, I and every driver's manual have believed that "Yellow light means brake." But that is wrong! That is not the traffic engineer's premise! It is the opposite: Yellow means go. What we have suspected all these decades is true. When we see a light turn yellow, it means "floor it." That is what the math of the yellow light equation predisposes us to do. Because...

It is impossible to stop within the time the light is yellow.

 The yellow time is shorter than the time it takes us to stop our car. This sets up conditions where if we try to brake, we will run the red light. We can be penalized for braking. We can see the light turn to yellow, brake, but then skid through the intersections on a red. The yellow time is shorter than the time it takes us to stop our car.In the end, the math both 1) makes us guess what to do and 2) gives us no option which guarantees us avoidance of running a red light and 3) disposes us to run the red light because the yellow time is shorter than the stopping time. It is Russian roulette. The traffic engineers personally have loaded our guns.

Red light camera programs love it. People will run red lights because the math will eventually make them run red lights. The citation statistics prove this. The existence of the red light camera industry proves this.

The State of Georgia has caught on. Georgia requires that the yellow light intervals get one additional second at all red light camera intersections. What Georgia does not yet understand is why that is so effective. It is effective because the closer the yellow interval comes to the stopping time, the closer to zero is the number of red light runners.

If the DOTs actually put "yellow Light means brake" into their math, no one would run red lights except for the occasional drunk.
b. Some yellow light intervals do not meet the minimum requirement of NCDOT's own erroneous equation. This failure, like group 1a, are explicit violations of Session Laws 2004-141 and 2001-286.

> 3b cases are cases when the engineer simply punched the wrong numbers into his calculator. The result is the same as all the other groups. The numbers violate the Laws of Nature, in turn forcing people to run red lights.

King Cnut

${ }^{1}$ King Cnut was a Viking King of Norway, Denmark and England in the years before the Norman invasion of England. Henry of Huntingdon, the $12^{\text {th }}$ century chronicler, tells how Cnut set his throne by the sea shore and commanded the tide to halt and not wet his feet and robes. But the tide failed to stop. According to Henry, Cnut leapt backwards and said, "Let all know how empty and worthless is the power of kings, for there is none worthy of the name, but He whom heaven, earth, and sea obey by eternal laws." He then hung his gold crown on a crucifix, and never wore it again. Forester, T. (ed. \& trans.), The Chronicle of Henry of Huntingdon, Bohn, 1853 (reprinted Llanerch, 1991) p. 199.

Citation Statistics 2004-2010, Town of Cary

